G-1-P (Potato) Report

Introduction / Theory

Preparation of Enzyme

Use of Phenymercuric Nitrate

Incubation of Enzyme with Starch

Heat Inactivation

Removal of Inorganic Phosphate, (Mg(OAc)₂·4 H₂O)

How does Mg(OAc)₂·4 H₂O remove P_i?? Decolorization.

Assays-"Fiske-Subbarow"

7-Min Hydrolysis (Indication G-1-P: P_i after Hydrolysis - P_i without Hydrolysis) How does the hydrolysis work (equation)??

Inorganic Phospatte (P_i)

Determination $P_i < 15\%$ of 7-Min P

Use of Cation Exchange Resin (Dowex 50)

How does Dowex 50 Work??

Assays-"Fiske-Subbarow"

7-Min Hydrolysis (Indication G-1-P: P_i after Hydrolysis - P_i without Hydrolysis)

Inorganic Phospatte (P_i)

Use of Anion Exchange Resin (Amberlite, IR-45)

How does Amberlite work??

Assays-"Fiske-Subbarow"

7-Min Hydrolysis (Indication G-1-P: P_i after Hydrolysis - P_i without Hydrolysis)

Inorganic Phospahte (P_i)

"Fractions"

Combined Eluent

Graphs:

P_i Standard Curve Glucose Standard Curve (Nelson's) Elution Pattern

Tables:

Data

Percent G-1-P Recovered During Purification

Sample Calculations:

Number µmoles P_i and 7-min P- "Aliquots"

Indicate that G-1-P concentration is a comparison of P_i after 7-Min Hydrolysis to P_i without Hydrolysis

Number µmoles P_i and 7-min P- "Entire Volume"

Results

A Flow chart of the steps in the isolation, indicate the purpose of each step. Table: Volume, μ moles P_i 7-Min / mL, μ moles P_i 7-Min Total Volume, Percent Yield

Characterization

7-Minute Hydrolysis

Total Hydrolysis

Unhydrolyzed Sample

How many µmoles of P₁ contaminate your product??

Results of Nelsons Test (Reducing Equivalents)

How does this assy work??

Where would the G-6-P come from??

Conclusion

Extra "Stuff"